

"Rocket" science in the deep sea

"I spy with my 'little' eye what nobody can see!"

Marck Smit & Roel Bakker (NIOZ)

&

Jan Visser (Nikhef) – slides courtesy of Rasa Muller

NIKHEF AT A GLANCE

- Institute in Amsterdam & partnership with six universities
- Founded in 1946 and grown to nearly 400 staff

Discovery of the Higgs boson (2012)

Discovery of gravitational waves (2015)

KM3NeT - concept

Angular resolution

Angular resolution is better than 0.1 ° for neutrino energies above 20 TeV

White Rabbit: an extension of Ethernet

- Two separate tasks
- 1. Synchronisation:

Fundamental for track reconstruction

Figure 1—Histogram of an ensemble of measurements [1]

2. Deterministic, reliable and lowlatency Control Data delivery

[1] https://standards.ieee.org/ieee/1588/6825/

Energy ranges

KM3NeT/ORCA
Oscillation Research
with Cosmics In the Abyss

KM3NeT/ARCA
Astroparticle Research
with Cosmics In the Abyss

Detector design

1 building block = 115 lines

1 optical module = 31 photomultiplier tubes

71 unique components (in solid or liquid phase)

How the smallest particles can teach us about the biggest things we know of

Deployment of new lines

Deployment of new lines

Deployment of new lines

Sources under observation

Selected sources under observation

Simulation example of background distribution (red) and possible signal clusters (green)

"Rocket" science in the deep sea

"I spy with my 'little' eye what nobody can see!"

part 2 ... and now something completely different!

Marck Smit & Roel Bakker (NIOZ)

Rocket science in the deep sea 2

Visualizing underwater waves using temperature & underwater robotics

sea and oceans, academic, fundamental and applied research

Roel Bakker Marck Smit

June 2023

Royal NIOZ at a glance:

- On the island of Texel and Yerseke
- Major working areas: North/Mid Atlantic,
 North Sea, Mediterranean, etc!
- Staff: 200 people + 200 flex
- Founded in 1876

RV Pelagia

RV Pelagia: tools & capabilities

- RV Pelagia
- 2 Hipap 100 USBL acoustic direction finder
- 3 Kongsberg EM-302 Multibeam Echosounder
- 4 Bottom penetrating echosounder
- 5 Seismic Array (Sleeve Guns)
- 6 CTD Rosetta frame with water samplers
- 7 Ultra-clean-CTD Frame 'Titanium' with Pristine® water samplers
- B Deep Sea Mooring with ADCP, current meter and Sediment Trap
- 9 Agassiz Trawl for quantitative deepsea bottom trawling
- 10 Deep Digging Dredge (Triple-D) for sampling benthic macrofauna
- 11 Multi-Corer for multiple small samples of surface sediments
- 12 Box Corer for large samples of surface sediments
- 13 Piston Corer for sampling long (10-20 m) sediment cores
- 14 Altrap Bottom Lander with larvae collector
- 15 Albex multi-purpose Bottom Lander for measurements and experiments at the sea floor
- BoBo Bottom Lander with downwardlooking ADCP current meter
- 17. Mobile underwater vehicle (MOVE)
- 18. Remotely operated vehicle (ROV)

3D Thermistor project

Key points

- Measuring internal underwater waves
- Spatial and temporal resolution
- Based on ideas of KM3Net (cubic km neutrino telescope)
 the concept of 3D-Thermistor array was born
- Sensor volume: 500,000 m³
- 45 lines, 125 m long, 9.5 m apart, 3,000 sensors
- 3 years sampling
- Water depth 2,500 m
- French Mediterranean
- Close to KM3Net neutrino detector

Thermistor sensor

High-res temp sensor

- Precision < 0.5 mK</pre>
- Response time 0.25 s (in water)
- Sensors are 'wireless':
 - \rightarrow any number (100 or more)
 - → at any position on moorings
 - → no connecting cables
- All clocks are synchronized inductively

Internal waves

- transport of matter
- → marine geology
- * without turbulence no life
- → marine biology
- ∗ large-scale ocean stratification → marine chemistry
- Impact on underwater structures

Designing, modelling, engineering, and ...testing, testing, testing

Testing

- Controlled floating and sinking tests
- Scale model of the Steel ring
- Free fall? Air release valves?
 or controlled by parachute??

Testing 3

- Controlled sinking parachute
- Sensor package placing, with custom build assembly raft

Complete ring in the water

- Making electrical connections for the synchronizer
- Tensioning steel cable grid

Final steps

- Placing releases with lines to parachute
- Prepare for towing

And finally, sinking to the bottom!

- Disconnection from the Pelagia
- Removing air vent flaps at the bottom
- Releasing air by manually opening valves
- Timed release per steel section

ROV inspection, 2 months later

New Underwater Robotics for NL science community

Information on the sub projects

Long range gliders

- Data almost real time via satellite telemetry
- Remote control
- Long range en long endurance
- Wide array of sensors
- Diving depth down to 1,000 m

Autonomous Underwater Vehicle (AUV)

- subsea scanning at a close distance
- high resolution measurements
- depth rating 2,000 m
- endurance up to 24 hours
- wide array of sensors

Remotely Operated Vehicle (ROV)

- experiments, measurements and interventions at depth
- depth rating 6,000 m
- robust, stable and precise
- Opto/electric tether
 o wide band fibre optic connection
 - o unlimited endurance
- Live data availability
- Wide array of sensors and tools